

LightBendTM Straight Dual 2x2 Bypass MultiMode Switch (Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

Product Description

The LB Series Straight Dual 2x2 Bypass multimode switch connects optical channels by redirecting incoming optical signals into selected output fibers. This is achieved using a patented opto-mechanical configuration and activated via an electrical control signal. Latching operation preserves the selected optical path after the drive signal has been removed. The switch has integrated electrical position sensors. This novel design significantly reduces moving part position sensitivity, offering unprecedented high stability as well as an unmatched low cost. Electronic driver is available for this series of switches. The switch is bidirectional.

We offer tight-bend-fiber version, which reduces the minimum bending radius from normal 15 mm to 7 mm. This feature enables smaller overall foot print.

Performance Specifications

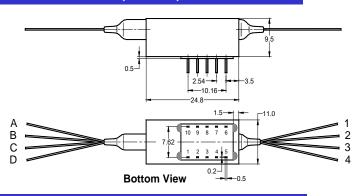
LB Straight Dual 2x2 BP MM Switch	Min	Typical	Max	Unit		
Operation Wavelength		850 /1310		nm		
Insertion Loss*		0.4	0.8	dB		
Wavelength Dependent Loss			0.3	dB		
Return Loss **	35			dB		
Cross Talk **	35	45		dB		
Switching Time		3	10	ms		
Repeatability			±0.02	dB		
Durability	> 10 ⁷			Cycle		
Operating Voltage	4.5	5.0	5.5	VDC		
Operating Current		30	60	mA		
Voltage Pulse Width (Latching)		20		mS		
Switching Type	L					
Operating Temperature	-5		70	°C		
Optical Power Handling		300	500****	mW		
Storage Temperature	-40		85	°C		
Package Dimension		24.8L x 11W x 9.5H				
4.		·	· ·			

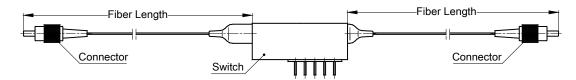
- * Insertion loss excludes connector.
- ** Light source CPR<14dB.
- ** Our device is designed and optimized for certain laser launch condition which is characterized as CPR value. In general, if application exceeds the specified CPR value, optical performance will become worsen.
- **** Continuous operation, for pulse operation call.

Features

- Low Optical Distortions
- High Reliability
- Fail-Safe Latching
- Epoxy-Free Optical Path

Applications


- Channel Blocking
- Configurable Add/Drop
- System Monitoring
- Instrumentation



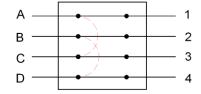
LightBend™ Straight Dual 2x2 Bypass MultiMode Switch

Mechanical Dimensions (Unit: mm)

Fiber Length Definition

Electrical Driving Requirements

The load is a resistive coil which is activated by applying 5V and draw about 40mA (coil resistance is 125 Ω for latching and 178 Ω for no-latching, respectively). Applying too long pulse for the latching version will heat up the device.


Latching Type

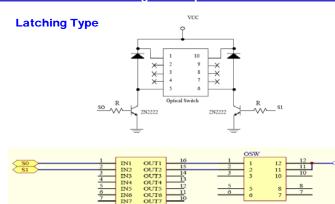
Optical Path		Electric Drive				Status Sensor			
		Pin 1	Pin 5	Pin 6	Pin 10	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9
Normal Mode	$A\rightarrow 1, B\rightarrow 2$ $C\rightarrow 3, D\rightarrow 4$	N/A	N/A	L(0V)	H (5V Pulse)	Close	Open	Open	Close
Bypass Mode	$A{ ightarrow}C$, $B{ ightarrow}D$	H (5V Pulse)	L(0V)	N/A	N/A	Open	Close	Close	Open

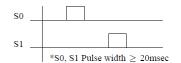
Non-Latching Type

Optical Path		Electric Drive				Status Sensor			
		Pin 1	Pin 5	Pin 6	Pin 10	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9
Normal Mode	$A \rightarrow 1, B \rightarrow 2$ $C \rightarrow 3, D \rightarrow 4$	N/A	H (5V)	L (0V)	N/A	Close	Open	Open	Close
Bypass Mode	$A \rightarrow C$, $B \rightarrow D$	N/A			Open	Close	Close	Open	

Functional Diagram

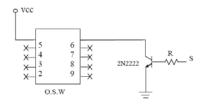
LB Strait Dual 2x2 Bypass MM Switch

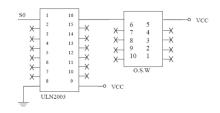



LightBend™ Straight Dual 2x2 Bypass MultiMode Switch

Ordering Information

LBSW-								
	Туре	Wavelength	Switch	Package	Fiber Type		Fiber Length	Connector
	Dual 2x2=42 Special=00	1060=1 C+L=2 1310=3 1410=4 1550=5 650=6 780=7 850=8 1310 & 1550=9 850 & 1310=A Special=0	Latching Type=1 Non-Latching Type=3 Special=0	Special-0	50/125=5 62.5/125=6 Special=0	900um tube=3 Special=0	0.5m=2 1.0m=3 Special=0	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC=7 Duplex LC=8 Special=0


Electrical Driving Example



SO = High, S1 = Low. To change the OSW state to Ch 1. SO = Low, S1 = High. To change the OSW state to Ch 2.

Non-Latching Type

SO = Low. To change the OSW state to default mode(CH1). SO = High. To change the OSW state to CH2.